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Polygonal Billiards with Small Obstacles
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The technique of unfolding a polygonal billiard table is used to answer certain
questions concerning the illumination problem. The main problem addressed is
how many point obstacles would suffice to block any billiard path between two
points of the polygon. The answer can then be generalized from point obstacles
to small e-neighborhoods of points.

INTRODUCTION AND DEFINITIONS

This paper was inspired by a recent article(1) giving an example of a
polygonal billiard, such that some pairs of points inside the billiard table
cannot be connected by a light ray (or, equivalently by a billiard trajec-
tory) which is reflected at the edges. (See e.g., refs. 2, 3, and 6). The proofs
given in ref. 1 rest on the convention that any billiard path entering a
corner stops there. This may be regarded as somewhat unsatisfactory and
raised objections. An alternative would be took use the following conven-
tion (see Fig. 1 for an illustration): If a path hits a corner, consider a
sequences of points on each of the two edges forming the corner such that
the points in each sequence converge to the corner. For each point in one
of the two sequences lying close to the corner consider a straight line from
the last reflection of the original path to the point in question. Since these
paths hit an edge their reflected paths are well-defined. As the sequences of
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Fig. 1. Definition of the continuations of a path hitting a corner.

points converge to the corner, the paths associated with them converge to
the original path prior to hitting the corner. The two sequences of reflected
paths converge to two paths which we will define to be the continuations
of the path hitting a corner. Note that in the case that the angle in the
corner is of the form 360°/n for some n e N the two continuations agree.

The question addressed is as follows: Given a pair of points, L and A,
in a plane polygon P, is it possible to find a finite configuration P1,..., Ps

of points in P such that any trajectory from L to A passes through one of
these points before reaching A? In other words, putting obstacles at
P1 ,..., Ps would make it impossible for a light source at L to lighten point A.
Such a configuration is called blocking, and a polygon is said to have the
finite blocking property if a blocking configuration exists for any pair L,
A e P and the number of obstacles is uniformly bounded. The motivation
for such a consideration is that we want to be able to assess the number
of ball (in two dimensions, disks) as obstacles preventing two billiard balls
from hitting one another, uniformly with respect to the radii of the billiard
balls and the size of the billiard table. We comment on this aspect and give
the definition of the blocking property for this case in Section 4.

2. OBSTACLES IN THE SQUARE

As an illustratory example we will take the case of the square
y - [0, 1 ]2. First, consider the case where L is at the origin O - (0, 0).

Theorem 1. For any point A e y there exists a blocking configura-
tion containing at most four points.

Proof. Using the technique of unfolding of trajectories (see e.g., refs. 4
and 5) we can transform each billiard trajectory in the square into a halfline
in the plane starting at the origin (see Fig. 2): Note that the unfolding of
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Consider now a path from O to a mirror-image A' of A. We will show
that its half-way point is a mirror-image of an obstacle.

Case 1. A' = (x, y) + (2m, 2n). The halfway-point is (x/2 + m,
y/2 + n), which is included in (3) and so is a mirror-image of an obstacle.

822/90/1-2-30

See Fig. 3 for an illustration of the blocking set. Using the symmetry in this
definition we get that the mirror-images of this set are:

We show that the following set of 4 points is a blocking configuration:

paths respects the convention on paths hitting corners. The mirror-images
of the point A = (x, y), denoted by M ( A ) , are:

Fig. 2. Unfolding of a path into a straight line.
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Fig. 3. The obstacles for the point A.

Other cases. These are analogous. |

Remark. If L is an arbitrary point of the square a similar construc-
tion gives us a blocking set of at most 16 points. The proof is analogous
to the one above, but will not be given in this section, as the result follows
as a corollary from a more general statement in Section 3.3.

3. GENERAL CASE

3.1. Group Structure

We introduce the group GP of motions of [R2 related to an n-edge
polygon P. GP is generated by the reflections of R2 at the edges of the
polygon in the following way: First one labels the edges a1,..., an, counter-
clockwise, say. Then any reflection process can be denoted by the word
corresponding to the sequence of edges at which the polygon is reflected.
In this process we reflect at the current position of an edge of the polygon,
i.e., its position in the plane after the previous reflections. The group opera-
tion is concatenation of words. The relations are the sequences of reflec-
tions that act on R2 as the identity map. So e.g., one set of relations is of
the form a2

i. As we concatenate at the right and of a word, the reflections
are to be read from left to right. G.^ is a quotient of the free group on n
generators. If it is clear which is the underlying polygon we may omit the
subscript 2P.

3.1.1. Examples. The Square. For the square y, G,v is generated
by a1,..., a4. In addition to the relations a2 we have the relations (a,a,+ 1)2

and the reverse relations (a,a,_,)2 , where a5 — a1 and a0 = a4. Thus any
mirror-image A' of a point A in y can be written in the following way:



where r' has centre r 2 ( O 1 ) and angle a1 +a2 and t' is the translation by
vector r 2 (O 1 ) — O1. In general, two rotations do not commute.

Next we consider products of translations, reflections and rotations.
Let f and g be two transformations of these types. Define g[h] be the trans-
formation of the same type as h, where the parameters of h, e.g., the vector
of translation or the axis of reflection or the centre and angle of rotation,
have been transformed by g first. We have:

Lemma 2. We have the following relations:

3.2. THE GROUP ACTION ON R2

Any element of GP is an isometry of the plane and can therefore be
written as a product of a translation, a rotation and, possibly, a reflection.
We will in general denote reflections by R, rotations by r and translations
by t. (Remember that the way G is defined, a reflection aj also reflects the
reflection axis for the next reflection!) Consider the action of two successive
reflections. We have two cases:

The two edges ai and aj are parallel: In this case, aiaj is a translation
by a vector orthogonal to ai whose length is twice the distance from a,
to aj.

The angle a from ai to aj is not zero: In this case, a ia j is a rotation
about the point of intersection of the two lines extending ai and aj with
angle of rotation — 2a. So, unless a = n/2, ai and aj do not commute.

Now consider two successive rotations: Let rl and r2 be two rotations
with centres Oi and angles ai. We have:

where e, u e {0, 1}, m, n e Z. Note that a1 a 3 is a translation by ( — 2, 0) and
a2a4 is a translation by (0, 2) in the (x, y)-plane.

Equilateral Triangle. For the equilateral triangle F, we have three
edges a1, a2, a3 and the group GF is given by:
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Proof. By geometric inspection. |

Define TP to be the subgroup of GP consisting of translations.

Lemma 3. The translations form a normal subgroup.

Proof. We have to show that

for all geG. We have by the statements (5) and (6) of Lemma 2 that for
any translation teT, g - 1 t g = g - 1 [ t ] g-1g is also a translation in G and
hence g-1Tg C T. |

So we can now define the quotient

Every element g of GP can be written as

where h e G is a representative of a coset of T and t e T. We can always
choose h uniquely so that it does not contain a translation. Next we look
at the set M(A) = {g(A) | geG^}, the orbit of A under GP.

Theorem 4.

where { B i } are the images of A under representatives of HP and the vj

are the generators of TP.

Proof. This follows from Eq. (8): Let g(A) be a mirror-image of A.
Then g(A) = (ht)(A), therefore 3h'eH^ such that g(A) = h'(A) +
Zj=i A.jVj. Conversely, let A' = h(A) + ̂ =l A j y j . Then there exists g e G P

such that A' = g(A). |

3.3. A Sufficient Condition

One of the main objectives is to determine which polygons possess the
blocking property. A useful sufficient condition is given by

Theorem 5. The following is a sufficient condition for a polygon P
to have the finite blocking property:



where

where |_-J denotes the integer part, {x}=x — |_x_l, and A :=(llv.., AN).
Note that there are only finitely many P i ,A. We want to take pre-images of
the Pi,A's in the original polygon. For each Pi,A there is such a pre-image,
as follows from:

Lemma 6. For every point A e R 2 there is a point A'zP and
geGp such that g(A') = A.

The proof of this lemma will be given at the end of the proof. So
let { P ' i , A } be a set of pre-images in the original polygon for the Pit /s.
We will show that the P't_^s form a blocking set. For this it is enough to
show that all points of the form (11) are contained in M({P' i , A}) : =uanaDi^G,}.

This can be written as

where A,- e Z.

Proof. First we note that the convention on paths hitting corners is
consistent with the unfolding principle; all paths from L to A can be
expressed as straight lines from L to a mirror-image of A. So we obtain: In
order to block the point A, it is sufficient to place obstacles at the half-way
point on every path from L to a mirror-image of A. These half-way points
have the following form:

There exist finitely many vectors v}, 1 < j ^ N, and for any point A e 2?
there exist finitely many points At,l^i^k, such that M(A] consists
precisely of the points of the form:
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By (10) we have that the mirror-images of P'tu are precisely the points
of form:

where / runs through a finite set and A,-_7> runs through Z.
As the P'it^s are pre-images of the P^'s, we know that the P's are

contained in (l2). Therefore, V<, A3/', Ai,j,r' such that

But then all points of the form

where the A/s run through Z, are also in ^f({P'i,^}) by (12). So all half-
way points are in M ( { P ' i , A } ) , as they are all of the form

with Ar e Z, and we have arrived at a finite set of obstacles which form a
blocking set. |

Proof of Lemma 6. Assume false. Then there is a point A e (R2 that
does not have a pre-image in P. Pick an arbitrary point X in P and con-
nect it via a straight line to A. Move along this line and reflect the polygon
whenever its hits an edge (or a mirror-image of an edge). If this line hits
a vertex (or a mirror-image of a vertex), which may happen only after a
finite number of reflections, choose another starting point X. As there are
only countably many mirror-images of vertices, there is always a suitable
starting point. Once we have reached A, we have that there is a mirror-
image of P that contains A. But that means that there is a pre-image A'
of A in P. |

Remarks. The proof provides an upper bound for the number of
obstacles needed. From (11) we see that there is a blocking set with k2N

obstacles (for every Ai and for every Vj there are two cases: Aj = 0 or 1
(mod 2)).



3.4. Construction

Theorem 7. A polygon P constructed by repeatedly reflecting a
polygon 2 at its edges finitely many times has the finite blocking property
if 3. has (see Fig. 4).

Fig. 4. This polygon has the blocking property.

and the vectors vj are (0, ^/3) and (3/2, v/3/2) so that we obtain a blocking
set of at most 32 points.

For the regular hexagon we could demonstrate directly that it satisfies
the conditions of Theorem 5, but it is easier to use the following theorem
and the result for equilateral triangles.

The proof is non-constructive, as the proof of Lemma 6 does not
specify A', but under the additional condition on the mirror-images of P:

The number of minor-images of P lying above any point of
R2 is bounded by a constant I.

We obtain a "constructive" version by taking all pre-images given by
the reflection process instead of using Lemma 6 to obtain a pre-image in
the original polygon. For the advantage of having a finite algorithm giving
us a blocking set we have to pay the price of increasing the bound by a
factor of /.

For the unit square the points Ai for the point A(x, y) are (x, y),
(2 — x,y), (x,2 — y) and (2 — x,2 — y) and the vectors vj are (2 ,0 ) and
(0, 2), so that we obtain a blocking set of at most 16 points.

For the equilateral triangle with corners (0, 0), (1 ,0 ) and (1/2, ,/3/2)
the points Ai, for A = (x, y) are:
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Proof. Let A be the point in P we wish to block from a lightsource
LeP. We can think of 2 as the polygon containing L. Let A' be the pre-
image of A e 2. under the process that constructed P from 2. Now let {P i}
be a finite set of obstacles needed to block A' from L in 2. In order to
block A from L in P, we now take the following set of obstacles:

(a) the mirror-images of the Pi's obtained by the same reflecting
process as the one used in constructing P from 2,

(b) all points in P that are mirror-images of corners of 2,

Now assume that there is a path in 3? from L to A. By following this path
from A to L and reflecting the mirror-image of 2 whenever the path goes
through a mirror-image of an edge of 2, we fold it into a path in 2 that
goes from L to A'. But as the Pi are a blocking set for A' in 2, this is a
contradiction. |

Remark. Because of the symmetry of the square this theorem
together with Theorem 5 shows that every polygon constructed by glueing
together squares (such that always vertices are glued onto vertices) has the
finite blocking property (see Fig. 4).

3.5. Rational Polygons

Theorem 8. All rational polygons P, (i.e., all polygons with
p-rational angles) have the finite blocking property.

Proof. By Theorems 4 and 5 it is enough to show that

(a) HP is finite,

(b) TP, is finitely generated.

(a) For a rational n-gon P all angles are of the from m in/k for some
ke N, i= 1,..., n. Using (4) and Lemma 2 we see that every word of length
> 2k contains a translation, because the angles of rotation are all of the
form 2min/k. Hence HP contains at most n2k-1 elements.

(b) This follows from the fact that HP is finite. From (a) above we
have that every word of length ^ 2k contains a translation. Therefore there
are less than n2k ways to generate translations, as can be shown by the
following argument: Suppose we have a translation t = a 1 - - - a 1 , where
l^-2k. Then as a 1 - - - a 1 contains at least one translation t1 we can write
t — gt1h, Rewriting this we get:
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From the above we get that gh' = tt1
 - 1 = : t 2 e T P , so that t = t2 t1, i.e., t

cannot be a generator. |

3.5.1. Regular n-gons. As regular n-gons Pn are rational, they
possess the finite blocking property by the above theorem, which also gives
us the following upper bound on the number of obstacles: The number of
generators of TP. is at most n2n-1. For an upper bound on |HPn | we have
n2n-1, as the total length of any word in HPn is less than 2n, so by the
remark on p. 7 we have an upper bound of

A better upper bound can be obtained the following way: Split Pn into n
congruent triangular "cake-slices." Let Ai be the points in the polygon
obtained by taking the counterparts, in each triangle, of A and A', where
A' is the image of A under the reflection of the triangle's symmetry axis. We
end up we a set of maximally 2n points A(i) (see Fig. 5). In order to exploit
this symmetry we use a generalization of Theorem 5 from single points to
sets, the proof of which is analogous. We write ,U(,c/) for the orbit of the
set stf under GP.

Theorem 9. The following is a sufficient condition for a polygon P

to have the finite blocking property:
There exist finitely many vectors vj, 1 <j< N, and for any finite set of

points AeP there exist finitely many points Ai, 1 <i<k, such that M(A)
consists precisely of the points of the form:

where Aj e Z.

Fig. 5. The points A(1) in the case of an octagon.



As in the remark after Theorem 5 we have a blocking set of at most
k2N points. We apply this to the two cases n odd and n even separately:

n odd: In this case we see that the product of two reflections
acts as a translation on the set A:= {A ( i )}, so that the condi-
tions of Theorem 9 are satisfied with k = 2n(n+ 1) (the original
polygon plus n reflections) and N = n(n — 1). We obtain an
upper bound

4. APPLICATION TO BILLIARD BALLS OF POSITIVE SIZE

Though it is often convenient to represent physical objects such as
lightsources or billiard balls by points this does not always capture all of
the possible interactions between the original objects. In this section we
generalise the results of the previous sections so that they apply to small
balls as light sources, receptors and obstacles.

4.1. The Square

As an illustration we will again start witch the case of the square P
with a point lightsource in the corner first. Instead of a single point we aim
to block an e-ball Be(A) := { x e P : | A — x | <e}. From the proof of
Theorem 1 we have that for a point A = (x, y) a blocking set is given by
Eq. (2). As the coordinates for the blocking points Pi depend linearly on
the coordinates of A, we get that B e ( A ) is blocked by four blocking balls
B e / 2 (P i ) - Using the remark at the end of Section 2 about a general
lightsource L in y we obtain that in the general case Be(A) can be blocked
by 16 balls B e / 2(P i) . Next we use the symmetry between L and A to obtain
that all paths between two points of Be(A) and Be(L) respectively for two
points A, L in y can be blocked by 16 obstacles B2 e(P i).

4.2. Blocking of e-balls in rational polygons

From Section 3.5 and the proof of Theorem 5 we get that, given a
rational polygon P and points L and A in P, there is a finite blocking set,

n even: In this case we have that every reflection acts as a
translation on the set { A ( i ) } , and that N = n/2. We obtain an
upper bound
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whose elements Pi depend linearly on the coordinates of L and A. There-
fore if we replace L and A by e-balls we obtain that for any e > 0 all paths
between Be(A) and Be(L) are blocked by a finite number of balls B 2 e ( P i ) .

Remark. Given two e-balls Be(A) and B e ( L ) , we can always find a
finite number of blocking balls B 2 e (P i ) , by just simply building a "ring"
around Be(L), say. The special nature of the blocking configuration
described in the preceding paragraphs is that the number of blocking balls
does not depend on E. Therefore we define:

We say that a polygon has the finite blocking property for
disks if there exists neN such that for all pairs of points L and
A there exists a finite number of points Pi, 1 <i<n with the
property that for all E > 0 all paths between two points of Be(A)
and Be(L) respectively are blocked by Un

i=1 B 2 e P i ) .

Using this definition we obtain:

Theorem 10. All rational polygons possess the finite blocking
property for disks. |

5. CONCLUDING REMARKS

We have seen that in a wide class of polygons it is possible to block
all paths between two points by placing a finite number of obstacles into
the polygon. There still remain open problems, some of which we have
conjectures about:

We have not yet found a polygon that does not have the blocking
property, although we conjecture that only the rational polygons do.

We conjecture that that the minimal number of obstacles in a regular
n-gon is bounded at least linearly from below.

What is the situation for billiards with a general piece-wise smooth
boundary?
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